解:5)当x=0时,原极限=0当x≠0时,原极限=lim(n→∞)x·sinx/(2^n)/[x/(2^n)]显然,当n→∞时,x/(2^n)→0根据等价无穷小:sinx~x于是:原极限=lim(n→∞)x·x/(2^n)/[x/(2^n)]=x综上:原极限=x6)根据倍角公式:1-cosx=2sin