如果a∈(π⼀2,π),sina=4⼀5,那么sin(x+π⼀4)=根号2⼀2cosa=___________

2025-12-17 23:36:37
推荐回答(2个)
回答1:

a∈(π/2,π)
sina=4/5
cosα=- 根号[1-(4/5)^2] = - 3/5

sin(x+π/4)
=sinxcosπ/4+cosxsinπ/4
=根号2/2sinx + 根号2/2cosa
=根号2/2 * 4/5 + 根号2/2 *(-3/5)
=根号2 / 10

根号2/2cosa
=根号2/2 *(-3/5)
=-3根号2 / 10

sin(x+π/4)+根号2/2cosa
=sinxcosπ/4+cosxsinπ/4+根号2/2cosa
=根号2/2sinx + 根号2/2cosa + 根号2/2cosa
=根号2/2sinx + 根号2cosa
=根号2/2 * 4/5 + 根号2 *(-3/5)
=2根号2 / 5 + 根号2 *(-3/5)
=-根号2 / 5

回答2:

x是钝角
cosx<0
sin²x+cos²x=1
cosx=-3/5

sin(x+π/4)
=sinxcosπ/4+cosxsinπ/4
=√2/10

√2/2*cosa=-3√2/10