求(2+1)(2^2+1)(2^4+1)…… (2^16+1)+1=?值

请说明理由
2025-12-15 11:48:56
推荐回答(6个)
回答1:

(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
=(2^2-1)(2^2+1)....(2^16+1)+1
=...
=(2^16-1)(2^16+1)+1
=2^32

希望我的回答对你有帮助,采纳吧O(∩_∩)O!

回答2:

(2+1)(2^2+1)(2^4+1)…… (2^16+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1)…… (2^16+1)+1
=(2^2-1)(2^2+1)(2^4+1)…… (2^16+1)+1
=(2^4-1)(2^4+1)…… (2^16+1)+1
=(2^16-1)(2^16+1)+1=(2^32-1)+1=2^32

回答3:

因为(2-1)(2+1)(2^2+1)(2^4+1)…… (2^16+1)
=(2^2-1)(2^2+1)(2^4+1))…… (2^16+1)
=(2^4-)(2^4+1))…… (2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
=(2^16-1)(2^16+1)
=2^32-1,
所以(2+1)(2^2+1)(2^4+1)…… (2^16+1)+1
=(2^32-1)/(2-1)+1=2^32。

回答4:

左边乘以(2-1) 最后=2^32

回答5:

(2+1)(2^2+1)(2^4+1)…… (2^16+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1)…… (2^16+1)+1
=(2^2-1)(2^2+1)(2^4+1)…… (2^16+1)+1
=(2^4-1)(2^4+1)…… (2^16+1)+1
=2^32-1+1
=2^32
=4294967296

回答6:

(2+1)(2^2+1)(2^4+1)…… (2^16+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1)…… (2^16+1)+1
=(2^2-1)(2^2+1)(2^4+1)…… (2^16+1)+1
=(2^4-1)(2^4+1)…… (2^16+1)+1
......
=(2^16-1)(2^16+1)+1
=(2^32-1)+1
=2^32
=4294967296