用洛必达法则求[1+(a⼀x)]^x的值,x趋向于无穷

2025-12-14 08:07:37
推荐回答(1个)
回答1:

y=(1+a/x)^x
lny=xln(1+a/x)=[ln(1+a/x)]/(1/x)
x→∞
所以这是0/0型,可以用洛必达法则
分子求导=[1/(1+a/x)]*(1+a/x)'=[1/(1+a/x)]*(-a/x^2)
分母求导=-1/x^2
所以=a/(1+a/x)=ax/(a+x)
现在是∞/∞型,还可以用洛必达法则
=a/1
=a
所以lny的极限=a
所以y的极限等于e^a