证明,4个连续自然数的积 加1的和是一个完全平方数
设:4个数分别是a,a+1,a+2,a+3
因为a*(a+1)(a+2)(a+3)+1
=a(a+3)(a+2)(a+1)+1
=(a^+3a)(a^+3a+2)+1
=(a^+3a)^+2(a^+3a)+1
=(a^+3a+1)^
所以4个连续自然数的积,加1的和是一个数的平方
设这4个连续自然数分别为(x+1)、(x+2)、(x+3)、(x+4)
(x+1)(x+2)(x+3)(x+4)+1
=[(x+1)(x+4)][(x+2)(x+3)]+1
=(x^2+5x+4)(x^2+5x+6)+1
=(x^2+5x+4)(x^2+5x+4)+2(x^2+5x+4)+1
=(x^2+5x+4)^2+2(x^2+5x+4)+1
=(x^2+5x+4+1)^2
=(x^2+5x+5)^2
所以
比4个连续自然数的积大1的数,必是一个完全平方数