直尺、圆规和量角器可以画出任意正多边形。 但是在古希腊时,作图只使用没有刻度的直尺(unmarked ruler)和圆规(compass)。 用尺规作正偶边形如2n,3×2n,5×2n等正多边形并非难事。 但对正奇边形如3,5,7,9,11,13,15等的作图,在当时是件困难的事,而且并非全都可以作图成功。 1798年,德国数学家高斯只有19岁,他成功的以圆规直尺做出一个正十七边形,[1801年数学家高斯证明:如果费马数k为质数,那么就可以用直尺和圆规将圆周k等分.但是,高斯本人实际上并不会做正十七边形。第一个真正的正十七边形尺规作图法直到1825年才由约翰尼斯·厄钦格(Johannes Erchinger)]给出.并证明了正多边形的边数只有是费马质数或不同的费马质数乘积才可以尺规作图出来,当高斯去世后,人们为了纪念这位伟大的数学家,在他的故乡(Brunschweig)的纪念碑上刻了这个正17边形。▲费马质数相关
费马质数是质数且形如F(n)=2^(2^n)+1,其中n是非负整数。
n=0,1,2,3,4
k=3,5,17,257,65537
当n=0,1,2,3,4时,都是质数,但一般猜测n>4时,都不是费马质数。由于我们现所知道只有五个费马质数存在,所以用圆规可以做出的正奇边形是3,5,17,257,65537,以及这五个数的两两相乘积。 如3×5,3×17,17×257等共31个。 而最大的正奇边形的边数是65537。边数小于100,可以尺规作图的正多边形如下:
3;4; 5; 6 ;8; 10 ;12 ;15 ;16;17 ;20 ;24 ;30 ;32 ;34; 40 ;48 ;51 ;60 ;64 ;68 ;80; 85; 96;