怎么求1⼀(n^ n)的极限是多少?

2025-12-14 07:14:03
推荐回答(1个)
回答1:

解答过程如下:


扩展资料

其他方法:

设: bn=a^n/n! ,

对正项级数: ∑bn

由:lim b(n+1)/bn = lim [a^(n+1)/(n+1)!]/[a^n/n!] = lim a/(n+1) =0 < 1

故级数 ∑bn 收敛,从而:lim bn = lim(n->∞) a^n/n! = 0

证明(n/n)*[(n-1)/n]*[(n-2)/n]*...的极限为有限.

应该是这样1/(n^n)/n!=1/(n/1*n/2*n/3*.*n/n)

可得n/1*n/2*n/3*.*n/n所有因子大于1,且大于n,极限为无穷,故1/(n/1*n/2*n/3*.*n/n)的极限为0。