因为∫sinx*cosx dx =(1/4)∫sin2x d2x= (-1/4)cos2x+c
所以∫π/2 -π/2 sinx*cosxdx=∫π/2dx-(π/2)∫sinx*cosx dx
=(π/2)x+(π/8)cos2x+c
标准答案 注:sin2x=2sinx*cosx
∫π/2dx -π/2∫sinx*cosxdx
=∫π/2dx-π/4∫2sinx*cosx dx
=∫π/2dx-π/4∫sin2xdx
=πx/2+π/8cos2x+C
∫sinx*cosx dx =1/4∫sin2x d2x=-1/4cos2x+c
∫π/2 -π/2 sinx*cosx=0