求f(x)=x^4-4x^3+1的极值
解:
f'(x)
=[x^4-4x³+1]'
=4x³-12x²
=4x²(x-3)
当x>3时,f'(x)>0
当x<3时,f'(x)<0
当x=3时,f'(x)=0
∴ f(x)在x=3处取得极小值f3)=-26
f3)
=3^4-4*3³+1
=81-108+1
=-26